
An evaluation of melodic similarity models

Ludger Hofmann-Engl
The Link

Beddington
London

hofmann-engl@chameleongroup.org.uk

chameleongroup online publication 2005

Ludger Hofmann-Engl
Flat 2
59 Warminster Road
London SE25 4DQ
UK



Abstract

The advance of music information retrieval (MIR) has brought about a strong interest in melodic 

similarity  models.  In  fact,  the  majority  of  these  models  derive  their  rational  from  the 

implementation within a MIR context. This is, so authors argue in general, a model is suitable if it 

retrieves the desired melody or a close variation of it. This post hoc method does not permit the 

evaluation and comparison of these models (although such a “comparison” competition has been 

proposed for ISMIR 2005). The author of this paper approaches the issue form a different angle; 

rather  than  testing  models  in  an  unsystematic  fashion,  the  author  will  discuss  the  underlying 

cognitive principles of the similarity models. Here, it will be shown that four principle strategies 

exist: The contrast models, the distance models, dynamic programming and transition matrices. The 

author  will  then  demonstrate  that  a  variety  of  distance  measures  based  upon  a  specific 

representation of melodies appears most promising while insisting that no single measurement can 

be seen as the answer to everything.



1. Introduction

The interest in melodic similarity has mushroomed over the last few years. Although there 

exists  some interest in the issue at  hand from within disciplines such as ethnomusicology (e.g. 

Toiviainen & Eerola, 2002) and the cognitive sciences (e.g. Clarke & Dibben, 1997), the strongest 

interest exists within the league of MIR researchers. For the fifth year running, the International 

symposium on music information retrieval (ISMIR, 2000, 2001, 2002, 2003 &n 2004) included 

several papers on the issue in the year 2004 just as it did in previous years: Melodic similarity lies at 

the heart of MIR. This is, in order to retrieve a melody from a database, a query has to be placed. 

However, in many cases such a query is partly corrupted (e.g. when the user of a database does not 

remember parts of the wanted melody). In case that such a query is partially corrupted, an algorithm 

is needed to search the database for melodies which are similar to the query. Hence a working 

model of similarity is required.

Now, as we will  see, although not all models are derived from the background of MIR, 

most models are rooted within the MIR approach and hence they are tested within MIR applications 

only. Typically, a researcher has access to a musical database which contains a number of melodies 

(e.g.  the  Essen  database;  compare  Smith,  McNab  & Witten,  1998).  In  order  to  search  such  a 

database, a query in form of a notated or hummed melodic fragment is being placed. The researcher 

then looks at the melodies, which the similarity algorithm retrieves from the database, and expresses 

satisfaction that the retrieved melodies are close matches to the query indeed, based upon her or his 

subjective judgement. Examples of this kind of studies are: Doraisamy & Rüger (2002), Pienimäki, 

(2002)  and  Typke,  Giannopoulos,  Veltkamp,  Wiering,  Ren  Oostrum,  (2003).  Although  some 

researchers  make  references  to  psychological  data  and  similarity  theories  (e.g.  Hofmann-Engl, 

2001; Pauws, 2002) and  Müllensiefen & Frieler,  2004b), such knowledge is  generally ignored 

rendering  these  melodic  similarity  algorithm  speculative  at  its  best  and  wrong  as  its  worst. 

Additionally,  only very recently  have there  been made attempts  to  compare  melodic  similarity 

models such as the studies by Grachten,  Arcos & Mántaras (2002) and  Müllensiefen & Frieler 

(2004a & 2004b). However, none of these studies are comprehensive and in the case of Grachten, 

Acros & Mántaras (2002) only models belonging to the class of dynamic programming have been 



considered. Furthermore, in this case no reference to psychological similarity models is given and 

the evaluation is conduced in the typical MIR fashion. Finally, a paper which in its title “A Large-

Scale Evaluation of Acoustic and Subjective Music Similarity Measures” (Berenzweig, Logan, Ellis 

& Whitman, 2003) suggested to address the issue, refers to listeners’ judgments about how similar 

two artists are when compared to each other and does not address the issue at hand.

As  almost  every  researcher  has  her/his  own  melodic  similarity  algorithm,  it  would  be 

impractical  to  examine  each  one  of  them.  Here,  it  seems  more  efficient  to  classify  existing 

approaches into categories and evaluate the underlying principles, and then to consider examples of 

melodic similarity models illustrating their advantages or their disadvantages. This is, what will be 

done in chapter 2. However, before we start this discussion, the author wants to stress, that, as we 

are dealing with similarity algorithms applied to a cognitive context (a model ought to be correlated 

to the cognition of melodic similarity), the consideration of psychological and cognitive aspects will 

be of paramount importance.

2. The four approaches to melodic similarity

It is a rather difficult task to classify existing approaches to the issue of melodic similarity in 

a  systematic  fashion.  This  is,  some of  the  existing approaches are motivated  by cognitive and 

psychological  research,  while  others  are  simply  algorithms  which  are  constructed  for  specific 

purposes (such as music information retrieval). However, interestingly, it seems possible to group 

all  existing approaches  into  four  classes.  Two of  these  classes  are  rooted within  the  cognitive 

science. These are the models based upon the contrast model as introduced by Tversky (1977) and 

the  distance  model  as  developed  by  Shepard  (1987).  A  third  approach  known  as  dynamic 

programming,  which  was  first  proposed  for  the  purpose  of  measuring  similarity  by  Goad  & 

Kanehisa (1982), has been used in many contexts, such as bio-informatics, chemistry, music and 

multimedia  information  retrieval.  More  recently,  transition  matrices  have  been  employed  to 

measure melodic similarity by Hoos, Renz & Görg (2001). The author decided it would be best to 

discuss each of the different approaches in general terms (except transition matrices as it appears 



that this is an approach used only in music information retrieval), offer some critical  remarks and 

look at their implementation in the context of melodic similarity. Chapter 3 and 4 are dedicated to 

some general observations and an outlook into what melodic similarity model ought to deliver, 

suggesting that a melodic representation as introduced by Hofmann-Engl (2001, 2002, 2003, 2004) 

appears to be promising.

2.1. Contrast models

Central  to  Tversky’s  contrast  model  is  the  assumption  that  similarity  is  related  to  the 

weighted difference of measures of their common and distinct features. Thus, two objects A and B 

will be the more similar the more features they have in common and the less similar the more 

features the objects do not have in common. The model is usually presented in the following form:

where  S is the similarity, ϑ, α, β empirical constants,  c the count of common features,  a the count of features 

present in object A but not in B and b the count of features not present in object A but in B.

Applying this model, we find, that a white door with 4 wooden panels (a), will be more 

similar when compared to a white door with two wooden panels (b), than it will be when compared 

to a white door with no wooden panels (c). This situation might change if additional features are 

considered. For instance if the white door with 4 wooden panels (a) is the same standard size as the 

door without wooden panels (b) and the white door with 2 wooden panels (c) is in fact part of a doll 

house. Still, whether this additional feature will effect a reversal in similarity, so that (a) is more 

similar to (c) than (a) to (b) will depend on the empirical constants ϑ, α, β.

Apparently, Tversky did not,  as pointed out by Bradshaw (1997), take any features into 

account which are not present in both of the compared objects. Although this critique might seem 

formalistic (i.e. to say: "we count features both objects have, features the first object has but not the 

second one and features the first object does not have but the second one has, hence we also have to 

count the features neither object have”), but it is substantial in as much as it is related to a critique 

(1)S=θcαaβb



by Goodman (1972). According to Goodman the question, whether an object  X is similar to an 

object  Y is meaningless if not stated in respect to a property  Z. For instance, if the comparative 

property Y is colour, then all three doors of our previous example have the same similarity status. 

However, setting the comparative property  Y to be functionality, door (a) will be more similar to 

door (b) than to doll house door (c). Tversky justifies his approach by stating that, "when faced with 

a comparison or identification problem we extract a limited number of relevant features on the basis 

of which we perform the required task.” Although this might be the case, we still face the problem 

of identifying how and which are these features and how they are extracted. This is an issue raised 

by Barsalou (1982), who found that raccoon and snake are more similar when compared without 

further context specification than when compared in the context of the category pets. We might 

argue that Barsalou’s similarity experiment investigates conceptual similarity, rather than cognitive 

similarity and that  Tversky model is  applicable to cognitive similarity and hence not adversely 

affected by Barsalou’s findings. Here, we understand conceptual similarity as the similarity between 

two  concepts  such  as  Tel-Aviv  and  New York.  Cognitive  similarity  on  the  other  hand  is  the 

similarity between items which we actually perceive, such as the similarity between two snakes we 

see (or two melodies we hear). However, Medin, Goldstone & Gennter (1993) demonstrated in an 

experiment that cognitive similarity is likely to be affected by context as well. These researchers 

found that when an object which has ambiguous features (a drawing which can be interpreted as 

either a three dimensional or a two dimensional representation) is compared with an unambiguous 

object (a drawing with can only be interpreted as two dimensional) participants of the experiments 

adopted the unambiguous feature to interpret  both objects  (both objects  will  be seen to be two 

dimensional). If such cross-influences occur, it seems an unlikely assumption that similarity should 

be independent of context. It appears that context might pose a more serious threat to Tversky’s 

model than he seemed to confess.

This  deficiency  is  heightened  by  Tversky’s  own  discovery  of  asymmetrical  similarity 

judgements. This is, an object  A compared with an object  B will not necessary produce the same 

similarity measure when the comparison order is reversed to comparing object  B  with object  A. 

Thus for instance, Tversky found that the similarity between Tel Aviv and New York is greater than 

the similarity between New York and Tel Aviv. A reason for such asymmetrical  judgements is 



given by Nosofsky (1991). He argues that an object with high frequency presence (e.g., an object 

which we see often) is likely to be stored in the memory more strongly than an object with low 

frequency (e.g., an object we rarely see). Further, he maintains that an object with higher memory 

strength (in this case New York) will be activated more by an object of low memory strength (in 

this case Tel Aviv) than vice versa. Although this seems to be a reasonable explanation, we also can 

explain asymmetries by referring to the previous paragraph: Comparing Tel Aviv to New York 

(both are multi cultural and have a beach) will produce the selection of different relevant features 

than comparing New York with Tel Aviv (New York is a metropolis, but Tel Aviv is not). The 

advantage of this explanation is that it does not involve vague theoretical concepts. However, the 

point is that such asymmetries are seemingly in conflict with Tversky’s model. This conflict can 

only be resolved when we introduce the set  A  consisting of all relevant features for a specific 

comparison task comparing object  A and  B, where we set  A  to be a function of the comparison 

order with A(A,B) ≠ A(B,A). Admitted, this is no elegant solution. Still, if we consider the context 

where asymmetries have been reported (e.g., Medin, Goldstone & Gentner, 1993), we find that such 

asymmetries seem only to occur under conceptual similarity tasks and not under cognitive similarity 

tasks. (It does not matter whether we look at a snake 1 first and then at snake 2 or vice versa in 

order  to  determine  whether  they  are  similar).  Interpreting  Tversky’s  model  as  an  exclusively 

cognitive model, we might safely ignore asymmetries.

Tversky also demonstrated, in reference to his model, that the so called triangle inequality 

does not hold scrutiny in the context of similarity judgement tasks: The triangle inequality, until 

Tversky’s seen as a psychological fact, states that the psychological distance between two points a 

and c is lower than or equal to the sum of a to b plus b to c. This is D(a,b) + D(b,c) ≥ D(a,c). Quite 

clearly, this law does not hold when we consider the following example: Given an object A (red 

triangle), an object B (blue triangle) and an object C (blue square), we find, that although A is close 

to B because of shape and B is close to C because of colour, A and B are not close. This discovery is 

of crucial importance when similarity ratings are made on larger sets of objects necessitating the 

comparison of each object with each object.

There have been several proposals on how to modify Tversky’s model, with the model by 



Markman & Gentner (1993, 1996, 1997) being possibly the most interesting one. They proposed a 

structure-based model. Here, feature commonalties and feature differences are replaced by alignable 

commonalties, alignable differences and non-alignable differences. When comparing two objects, 

an alignable commonality is a shared feature which does not only exist in both objects but is also 

structurally at the same position (isomorphic) in both objects. For instance the wheel on a bicycle is 

isomorphic to the wheel of a motorcycle, but not to the wheel on a sewing machine. Shared features 

which are not alignable are called non-alignable. Alignable differences are deviations in features at 

the same position  (e.g.,  the bicycle  has  pedals  instead of  the engine on the  motorcycle).  Non-

alignable differences are features at a position in one object while there are no features at all at the 

other object (e.g., the tank on a motorcycle). The authors have been able to produce some evidence 

that alignable differences influence similarity judgements more than non-alignable differences do. 

This seems to confirm the validity of their approach. However, a major logical problem underlies 

their understanding of isomorphism. Even if Markman and Gentner understand the isomorphism in 

a  more  colloquial  sense,  it  might  be  useful  to  consider  a  more  formal  definition  of  what  an 

isomorphism is. Mathematically speaking, two objects A and B are isomorphic, if all positions of A 

can be mapped unequivocally onto a corresponding position in B by a function (generally written 

as:  F(a1 +  a2) =  F(a1) +  F(a2) with  a1,  a2   0 A and  F(a1),  F(a2),  F(a1 +  a2)  0 B). Quite clearly, a 

bicycle and a motorcycle do not fulfil this criterion, or generally speaking, isomorphism is not a 

requirement for us to consider two objects A and B to be similar. The only way for Markman and 

Gentner to save the idea of isomorphism, requires the consideration of a local isomorphism by 

segmenting the objects into sections. Thus, we might segment A into A1, A2 ... An and A’1, A’2 ... A’n 

while  B might  be  segmented  into  B1,  B2 ...  Bn and  B’1,  B’2 ..  B’n.  An isomorphism might  be 

established between  A1 and  B1,  between  A2 and  B2 and so on (alignable segments),  while some 

segments  A’1, A’2 ...  A’n and  B’1,  B’2 ...  B'n might  remain  without  such  an  isomorphism (non-

alignable segments). However, such a segmentation is already ambiguous and so is the question 

which segment to map onto which other segment (e.g. A1 onto B1 or A1 onto B2). For instance, the 

question, which metal bar on the bicycle should be mapped onto which metal bar on the motorcycle, 

appears to be a rather difficult one. Another, maybe more obvious, example would be given by the 

comparison of a chair with four differently shaped legs with a chair with three differently shaped 

legs. The question which legs are to be aligned or are isomorphic and which leg is to remain non-



aligned, might turn into an artful task. Moreover,  such a segmentation will  threaten the overall 

meaningfulness,  as two features might show local  isomorphism, and yet  this local  isomorphism 

might be accidental when considering the objects as a whole. Thus, the spinning wheel on a car 

might be aligned with the spinning disk of hard-drive in a PC, but whether there lies any meaning in 

doing so is another question. In fact, an appropriate aligning seems to imply that we understand the 

functionality of the compared objects. However, such understanding implies underlying theoretical 

constructs which themselves will have implications on similarity. Thus, the author concludes that, 

although  Markman  and  Gentner’s  model  might  shed  light  onto  some  simple  examples  (e.g. 

comparing Motel with Hotel and Hotel with Motorcycle), their approach seems to produce more 

problems than it sets out to solve.

2.1.1. Contrast models in music

There have also been several applications of Tversky’s  model in the context of melodic 

similarity (e.g. Kluge, 1996; Uitdenbogerd & Zobel, 1998). However, it seems that the most far 

reaching attempt was undertaken by Cambouropoulos (1998).

Cambouropoulos considered similarity in the context of categorization in an effort to offer a 

computational  model  of  melodic  segmentation.  The  underlying  principle  is  the  idea  to  vary  a 

threshold  h so as to allow the similarity of motives to generate categories so that similar motives 

will be found in the same category. Cambouropoulos defines the following relations:

and

Sh (x,y) = 1 if d(x,y) #h and Sh (x,y) = 0 if d(x,y) > h

where d(x,y) is the distance between the entities (motives) x and y,  wxi and wyi are weighting factors (which are 

under-defined in Cambouropoulos’s work),  xi and  yi the  ith feature of the entities  x  and  y respectively,  ν the 

number of features,  δxiyi the Kronecker  delta (with  δxiyi=1 for  xi=yi and  δxiyi=0 for  xi≠yi),  Sh(x,y) the similarity 

between the entities x and y (either similar or dissimilar)  and h is the threshold (variable number).

(2)

(3)

d x , y=∑


w x i
w yi

1− xi y i




Once two entities  x and y reach a level  d(x,y) above the threshold  h, they are considered 

dissimilar  and  if  d(x,y)  lies  below  h,  they  are  considered  similar,  which  then  serves  in  his 

unscramble algorithm as the criterion to draw up categories. Unfortunately, the question which are 

the relevant entities (features) xi and yi is assumed to be answered without ever being asked. Thus, 

Cambouropoulos uses the features: exact pitch intervals, contour and durations. As demonstrate by 

Hofmann-Engl (2003), these features alone are insufficient to describe melodic similarity and this is 

particularly true for the counter. In an experiment conducted by Hofmann-Engl (2003), it was found 

that  exact  interval  difference  is  a  similarity  predictor  rather  than  contour.  This  is,  a  melody 

ascending 3 steps (e.g. 3 semi-tones) compared to a melody ascending 1 step only, produces an 

interval difference of 3 – 1 = 2. The same is true for a melody ascending one step +1 compared with 

a melody descending one step -1. The interval difference here is: 1 - -1 = 2. Hofmann-Engl found 

that the measured similarity ratings for both cases were the same although the contour differs in the 

second  case  but  not  in  the  first.  Using  multiple  correlation,  it  was  shown  that  contour  is  an 

insignificant  predictor.  Moreover,  Cambouropoulos's  model  seems to  imply  complexity,  but  de 

facto it is a reduced form of Tversky’s model, only considering commonalties and not taken into 

account differences and it appears to be an inferior version. Clearly, a model of melodic similarity 

will have to refer to pitch (or some correlate of pitch), duration and dynamics. So, for instance, a 

model could count how many pitches two melodies  A and B have in common, how many pitches 

are in A, in case A has different length than B, which are not in B and how many pitches are in B 

which are not in A. Additionally, higher level features such as tone repetitions or symmetries (e.g. 

sequences) are features which will  allow for counting differences.  Additionally,  the findings by 

Egmond, Povel, & Maris (1996) and Hofmann-Engl (2003) are in contrast to Cambouropoulos's 

model. These researchers found that similarity judgements decrease with increasing transposition 

interval.  According to  the  above described model,  however,  we find that  all  transpositions are 

treated  as  equivalent.  Finally,  considering  the  discussion  above  about  Tversky  similarity,  it  is 

questionable whether contrast models are of meaning in the context of melodic similarity.

2.2.The distance models

The second approach to a similarity measures was put forward by Shepard (1987). Here, 



similarity is ultimately related to the distance between all the points of the objects’ attributes. Thus, 

if  the attributes  of two objects  A and  B fall  into five dimensions (for instance:  weight,  colour, 

volume,  shape,  sound characteristics),  we will  obtain  a  5-dimensional  attribute  vector  for  each 

object. The similarity then is a function of the distance between the attribute vector of object A and 

object  B.  We  give  a  physical  example:  Object  A is  a  cube  (12  sides),  5  kg,  red  (let  us  say 

wavelength is 660 nm) and produces a low frequency of 200 Hz. Object B is a pyramid with square 

base (8 sides), 4 kg, blue (let us say wavelength is 460 nm) and produces a high frequency of 2000 

Hz. Now, difference in sides is 12 - 8 = 4, in weight 5 kg - 4 kg = 1 kg, in colour 660 nm - 460 nm = 

200 nm and in frequency 2000 Hz - 200 Hz = 1800 Hz. Thus, the similarity will be a function of the 

differences.  Although the author used a physical example for the purpose of clearness, Shepard 

constructs  an  “abstract  psychological  space”  for  the  similarity  measure.  However,  he  discerns 

various  dimensions  of  this  abstract  space  as  being approximated  by physical  dimensions  (e.g., 

psychological space distance as measured by a Euclidean metric,  or in the case of pitch by the 

frequency ratios). Referring to this model, we find that the above mentioned experiment by van 

Egmond,  Povel  &  Maris  (1996)  can  be  easily  explained  in  form of  a  1-dimensional  distance 

similarity measure. If we form the distance between the first pitch pa of melody A and the first pitch 

pb of melody  B,  we obtain the transposition interval  I =  pa -  pb.  Thus, the similarity  S will  be 

proportional to I:

S ∝ I

where S is the similarity and I the transposition interval between two melodies.

Shepard’s model is usually written in the form:

where d(x,y) is the generalized distance of the objects x and y within the psychological space of dimension D, xk 

and yk are the psychological quantities of object x and y along the kth dimension, p is an empirical constant.

(4)

(5)d x , y=∑
k =1

D

∣xk− yk∣
p

1 / p



Applying  this  model  to  the findings in Egmond,  Povel  & Maris’s  study concerning the 

transposition interval, we get  p = 1 and  D = 1. This metric (p = 1) is called city-block metric in 

contrast to a metric with p = 2 which is called Euclidean metric. 

This approach is not only supported by the study above and the experiments by Hofmann-

Engl (2003), but by several studies conducted by Shepard (for instance that the length of time it 

takes participants to make same/different judgements about pairs of shapes, one in standard position 

and the other rotated, is proportional to the degree of rotation). However, it seems that there are two 

major problems with Shepard’s model as it stands. Firstly, as observed by some researchers (e.g. 

Cardie  &  Howe  1997)  the  model  does  not  incorporate  the  weighting  of  specific  dimensions, 

although  it  seems  highly  unlikely  that  all  psychological  dimensions  will  weigh  the  same  (for 

instance  the  loudness  dimension versus  the  pitch dimension).  However,  this  is  easily  fixed by 

introducing a weighting factor wk for each attribute (as we will see, this is exactly what O’Maidín 

(1998)  proposed).  More  serious  might  seem  the  second  issue:  The  asymmetries  as  found  in 

Tversky's experiments are not built  into the model. The minimal  expense required to solve this 

problem will call for a weighting factor which depends on the comparison order, possibly in the 

form wkxy for comparison of the object x with object y and wkyx for comparison of the object y with 

the object x. However, if we understand the distance model as a cognitive and not as a conceptual 

similarity model such weighting might not be necessary. It appears that a suitable melodic similarity 

model might belong to the class of distance models.

2.2.1 Distance models in music

A  modification  of  Shepard’s  model  has  been  put  forward  by  Kluge  (1996),  who  is 

apparently  unaware  of  Shepard’s  model,  for  the  application  to  music  analysis.  Hereby,  Kluge 

proposes a city-block matrix. However, he sees that the similarity distance should be weighted by 

the amount of attributes. Thus, we get:

(6)
d x , y=

∑
k=1

n

∣xk− yk∣

n



where d(x,y) is the generalized distance of the objects x and y within the psychological space, xk and yk are the 

psychological quantities of object x and y along the kth dimension and n the amount of attributes.

However, Kluge does not specify the attributes of a melody which will have to be taken into 

account. Thus, his model remains abstract and how to apply the model to music remains unclear. 

The omission of  p as found in Shepard’s model also seems to weaken this model, as there is no 

means of adapting this model to empirical data.

A more elaborate model was put forward by O’Maidín (1998). He proposed the following 

model:

where p1k is the pitch of the note from the first segment at the kth window, p2k is the pitch of the note from the 

second segment at the  kth window,  wk is the width of the kth window, wsk is the weight derived from metrical 

stress for the window k and n is the amount of windows.

Before  we  will  interpret  this  formula,  we  can  see  some  improvements  and  some 

impoverishment when compared to both Kluge’s and Shepard’s model: Firstly, this model does not 

contain  the  empirical  constant  p as  in  Shepard’s  model,  which will  imply  a  reduced empirical 

adaptability. It also does not divide the sum by the amount of summands n in contrast to Kluge’s 

model. This again seems problematic as it implies that the longer two melodies, the less similar they 

are regardless of any other features. However, his model shows some strength by introducing two 

weighting factors. O’Maidín suggested to use a weighting factor  wk, which basically gives more 

weight to notes of longer durations (duration of a “window”). Thus a crotchet might fetch the value 

wk = 1, while a minim might fetch the value wk = 2. The second factor wsk gives weight according to 

metrical stress. Thus, an upbeat note might fetch the value wsk = 4, while a down beat might fetch 

the value  wsk = 2. However, the choice of the weights is, according to O’Maidín, arbitrary. This 

seems to be an unsatisfactory point of view as the choice of the weights can affect the order of 

similarity of three motives. For instance, let us assume we have three motives Ma, Mb and Mc. All 

motives consist of four crotchet notes, written in a 3/4 times and starting on the first beat of bar 1 

(7)difference=∑
k

n

∣p1k−p2k∣wk wsk



and lasting to the first beat of bar 2. With motive Ma = [c, d, e, d], motive Mb = [c#, d, f, d] and Mc = 

[c, d#, c, d], we obtain the difference for ∆(Ma,Mb) = 2 + 0 + 1 + 0 = 3 and ∆(Ma,Mc) = 0 + 1 + 3 + 0 

= 4 for wsk = 2 for the first beat of a bar and wsk = 1 for any other beat and with 1 semitone = 1 as 

pitch unit. Thus we find that motive Ma is more similar to Mb than to Mc. However, if we change 

wsk = 4 for the first beat of a bar and wsk = 1 for any other beat, we obtain: ∆(Ma,Mb) = 4 + 0 + 1 + 0 

= 5 and ∆(Ma,Mc) = 0 + 1 + 3 + 0 = 4. Hence, motive Ma is now more similar to motive Mc than to 

motive Mb. This renders the proposed algorithm an arbitrary tool of low reliability. Surely, weights 

will have to be adjusted empirically. O’Maidín also suggested to integrate the variable m into the 

model, where we obtain:

where p1k is the pitch of the note from the first segment at the kth window, p2k is the pitch of the note from the 

second segment at the kth window, wk is the width of the kth window, wsk is the weight derived from metrical 

stress for the window k and n is the amount of windows and m an integer.

He suggests to vary the value m, until the difference takes a minimum value. The purpose of 

this is clear: Should the second fragment be a transposition of the first fragment, we obtain for all 

p1k -  p2k =  a  with  a as a constant. Setting  m =  a,  we obtain a difference of 0 between the two 

fragments  (maximum similarity).  Thus,  the introduction of  m renders the model  transpositional 

invariant.  However,  the meaning of  m becomes more obscure when the two fragments  are  not 

identical;  an  issue  surely  to  be  investigated.  True,  by  varying  m,  we  might  obtain  a  minimal 

difference, but whether this minimal difference implies maximum similarity is questionable. For 

instance, the model regards all  differences according to a city-block metric  without considering 

whether  other metrics  might be more appropriate  (e.g.,  Euclidean metric,  which might produce 

different  minimal  values).  A second objection against  this model  is  based on its  computational 

implications.  Assuming  we  are  comparing  just  five  motives  with  each  other  (all  in  all  15 

comparisons) and assuming these motives are not more than two octaves apart from each other, we 

will  have  to  compute  15  times  24  (=  360)  differences,  which  will  have  to  be  compared  and 

evaluated. This is surely no elegant solution. However, the main objection arises when considering 

(8)difference=∑
k=1

n

∣p1k− p2k−m∣w k wsk



the findings by Egmond & Povel & Maris (1996) and Hofmann-Engl (2003), who demonstrated 

that transposition is a melodic similarity predictor. This is, the larger the transposition interval the 

smaller are the similarity ratings. 

A  third,  more  recent  application  of  a  distance  model,  was  introduced  by  Typke, 

Giannopoulos,  Veltkamp, Wiering & Oostrum (2003) utilizing the Earth Mover’s distance.  The 

Earth Mover’s is the distance measure between discrete, finite distributions such as: X = { (x1,w1), 

(x2,w2), ..., (xm,wm) } and Y = { (y1,u1), (y2,u2), ..., (yn,un) }. Hereby, xi  - yj  represents the distance dij 

between the weights  wi and  uj and the difference  wi - uj represents the flow fij from Xj to  Yj. The 

entire weight of X is: W x=∑
i=1

m

w i and the weight of Y is: W y=∑
j=1

n

u j .We arbitrarily set: Wx ≥ Wy

The following rules apply:

1. The flow goes from the heavier set X to the lighter set Y and it has to be positive. This is: xi -  

yj > 0

2. The weight of xj can flow to several points  in Y, but can not exceed the weight of xj: This is: 

∑
j=1

mi

f ijwi Additionally, a point in Y has to absorb exactly the amount of it own weight: 

This is: ∑
i=1

n j

f ij=u j .

 

3. The total transported weight is the minimum sum of all flows, which is identical with the 

sum of all weights of the lighter set and equals Wy.

Finally, the Earth Mover’s distance is calculated as:

where EMD(X,Y) is the Earth Mover’s distance between the sets X and Y,  fij  is the flow from xi  to  yj,  dij is the 

distance between xi and yj, t is the number of elements in X where flow occurs, mi is the number of elements in Y 

the element xi flows to and the sums are to minimal. 

As abstract as these definitions appear, an example will help illustrating that the underlying 

(9)EMD X ,Y =min
∑
i=1

t

∑
j=1

m j

f ij d ij

W y



mechanism displays some simplicity. The following example is taken from Cohen (1999):

 Figure 1: The application of the Earth Mover’s distance to two sets of points in a two-dimensional 

space as taken from Cohen (1999).

The algorithm works in the following manner: Firstly, the distances between all elements of 

X and all elements of Y have to be calculated. Subsequently, the weight of the element of X with the 

smallest distance to an element of Y transports its weight to this element. The same happens then to 

the element which is second closest, followed by the third closest and so on, until all elements of Y 

are filled. This means, for the example above: x1 is closest to y1 (d11 = 155.7) and transports 0.23 of 

its weight. The second smallest distance is d23 = 198.2. Thus, the entire weight of x2 ( = 0.26) flows 

into y3. Next is the distance d13 = 198.2 which means that another 0.26 have to flow from x1 into y3. 

The remaining 0.26 of weight flow into y2. We obtain the EMD(X,Y):

The proof that weights always have to flow over the smallest distance in order to generate 

minimal EMD is given here:

EMD X , Y =155.7∗0.23198.2∗0.26252.3∗0.25277.0∗0.26
1.0

=222.4



Let  x1 and  x2 be points in  X and the point  y1 a point in  Y. Let further  d11 be the distance 

between x1 and y1 and d21 the distance between x2 and y1. Let further y1 have the weight u1.

Now, allowing both points of X to flow into y1 filling it, we obtain the distance:

As f11 and f21 fill y1, we obtain: f11 + f21 = u1. We further assume that f11 fills u1 partially and 

we set: f11 = u1 - c. Consequently, we obtain for f21 = c. Finally, we assume that d21 is larger than d11 

by the value e. Thus, we obtain:

This equation is either minimal if e = 0 (when both x1 and x2 have the same distance to y1), 

where it does not matter how the flow occurs, or if c = 0, which means that no flow occurs form the 

point further away from y1. Hence, flow always occurs along the smallest distance.

Clearly,  at  this  point  we  ought  to  comment  on  the  critical  issues  connected  with  this 

approach, but this will be easier and more stringent when it is done in the context of its application 

to music. Still, one point might be mentioned here; having to compute all the differences between 

the points of X and Y, having to order the differences and then to compute the distances results in 

expensive  computational  times.  As  reported  by  Typke,  Giannopoulos,  Veltkamp,  Wiering  & 

Oostrum (2003), this might result in a running time of ca. 70 min when searching a larger database.

This specific type of distance model has been implemented into a melodic similarity model 

by  Typke, Giannopoulos, Veltkamp, Wiering & Oostrum (2003). An example of it is given below.

D= d11 f 11ƒ d21 f 21

d 11u1−c d 11ec=d 11 u1−d 11cd 11cec

=e cd 11 u1



Figure 2: The application of the Earth Mover’s distance comparing to melodies as taken from  Typke, 

Giannopoulos, Veltkamp, Wiering & Oostrum (2003).

Here,  the  distance  dij is  calculated  as  the  Euclidean distance  consisting  of  the  pitch 

component  and  the  onset  time of  a  note,  such  as: d ij= pi− p j
2t i−t j

2 .  In  the  example 

above, the top melody has been transposed up by a perfect fourth. Hence the distance between the 

first note of the top melody and the first note of the bottom melody is 0. The next match is i = 5 and 

j = 3, there is no pitch difference, but time difference of 1.5 (the units are set arbitrarily). The same 

holds true for the third and sixth match. There is no difference between match 4, 5 and 8. Only 

match 7 displays both a time difference of 1.5 and pitch difference of 0.95 (again units are set 

arbitrarily).  The durations are represented in form of weights. In the above example one quaver 

fetches the value 0.5 and a crotchet the value 1. Thus, we obtain the EMD:

As interesting as this application is, it does not come without serious problems. Considering 

the above figure,  we find that the way the EMD is defined, that not all  weights flow from the 

heavier to the lighter set. This means that several notes of the top melody are deleted without being 

accounted for. This is in contradiction with Tversky’s model as much as it is in contradiction with 

EMD=00.75000.750.8945
8∗0.5

=0.79



dynamic programming (see below). According to Hofmann-Engl (2003), melodic intervals are a 

significant melodic similarity predictor. Hence, a note which is deleted between two others (let us 

say a note between the two notes c and e) will effect similarity (e.g. whether we delete the note d 

between  c and  e or the note  g). This means, not only that deletion ought to be accounted for but 

additionally, the exact note value too. A second issue is similar to a critique expressed earlier when 

discussing   O’Maidín’s  model:  the  researcher  applying  the  EMD  to  melodic  similarity  treats 

similarity  as  a  phenomenon  which  is  transposition  invariant.  As  mentioned,  not  only  that  this 

conflicts with experimental data (Egmond & Povel & Maris ,1996 and Hofmann-Engl, 2003), but 

aligning melodies so as to find the best transposition in order to obtain minimal EDM is consuming 

computational time. However, possibly the most serious problem is concerned with the calculation 

of the distances; not only that pitch and time are treated as if they were of the same perceptual 

dimension (as they are added in order to obtain the Euclidean distance) although they are not, what 

units ought to be applied to the measurement of time and which one to the measurement of pitch is 

likely to turn into a question which cannot be answered. This is, for instance in our example above, 

had we changed the pitch units of 0.95 per semitone to 0.5 per semitone, some distances dij would 

have been affected (the ones where the pitch differences were unequal zero) while others would 

have remained the same. This would change not only the distances but ultimately the flow and 

which notes would have been deleted as well. Other questions such as whether to use a city block 

matrix, an Euclidean or other non linear matrices, or the issue of how to set the units of the weights, 

would require extensive investigation and experimentation. This not to say that the model might be 

useful in certain contexts but due to the fact that it contains systematical errors, its validity and 

reliability will remain limited.

2.3. Dynamic Programming

Another recent approach to similarity seems to have emerged from the biological sciences, 

where  scientist  endeavour  to  analyse  the  similarity  between  different  DNA  proteins  (Goad  & 

Kanehisa, 1982). An example might be given by the comparison of the first 11 amino acids of 

human Alpha haemoglobin to the first 11 amino acids of the human beta haemoglobin:



Alpha Hb human:

g s a q v k g h g k k ...

Beta Hb human:

g n p k v k a h g k k ...

where the letters a, g, h, k, n, p, q, s, v represent specific amino acids

Both sequences match at places 1, 5, 6, 8, 9, 10 and 11. Additionally, they show similar 

amino acids at place 2 and 4. Thus, the alpha is supposed to be similar to the beta haemoglobin. In 

order to measure the degree of similarity, dynamic programming is used. That is, one sequence (like 

the alpha sequence) is transformed into another sequence (like the beta sequence). Then the editing 

steps are counted (edit distance). The longer the edit distance the less similar the sequences. Three 

different edit operations are used: Insertion, deletion and substitution. In our example above, we 

might substitute s for n (2nd place), a for p (3rd place), q for k (4th place) and g for a (7th place) in 

the  beta  sequence  in  order  to  transform the  beta  sequence  into  the  alpha  sequence.  Thus,  we 

performed four edit operations (edit distance 4). We might have chosen to delete s, a, q and g in the 

alpha sequence and n, p, k, and a in the beta sequence, resulting in an overall 8 edit operation (edit 

distance  8).  This  shows that  the  edit  distance  depends  on  which  edit  operations  we choose  to 

perform. This also implies that we can at best obtain a minimal edit distance only through a trial and 

error procedure (hence the name dynamic programming).  Generally,  the similarity will  be rated 

according to an algorithm of the form:

S = am - bi - cs

where S is the similarity rating, a, b, and c are weighting factors, m is the amount of matching places, i the amount 

indels (delete or addition) and s amount of substitutions.

The resemblance of this model with Tversky’s model is striking. Equating the amount of 

(10)



matches with the count of common features, we find that indels (amount of operations) corresponds 

to  features  present  in  one  object  but  not  the  other,  whereas  substitutions  are  a  cross  between 

common features (both sequences have an item at the place of substitution) and features present in 

one but not the other (the items at the place of substitution differ). This means that the critique 

brought forth against Tversky, applies to this model.

2.3.1. Dynamic Programming in music

The dynamic  programming  approach  has  been utilized  by a  variety  of  researchers  (e.g. 

McNab,  Smith,  Witten,  Henderson & Cunningham,  1996 and Ning  Hu,   Dannenberg,   Lewis, 

2002). However, so it seems to the author, the most far reaching application was introduced by 

Mongeau & Sankoff (1990). In order to apply dynamic programming the authors regarded a melody 

as a sequence of tones t1, t2, ..., tn, where a tone is seen as possessing the two features pitch (p) and 

duration (d). Thus, we might compare a sequence given as S1 = t11, t12, ..., t1n = (p11, d11), (p12, d12) ... 

(p1n,  d1n) with a sequence  S2 =  t21,  t22, ...,  t2n = (p21,  d21), (p22,  d22) ... (p2n,  d2n). The authors then 

produced a matrix calculating the distance  Iij between each tone from S1 with each tone from S2, 

where the distance Iij between two tones t1i and t2j with t1i ∈ S1 and t2j ∈ S2 is given as: Iij = (p1i - p2j 

+ d1i -  d2j) /2. Hereby, the pitch p is measured in semitones and the durations as multiples of a 

basic beat (e.g., in case the basic beat is measured in semi-quavers a quaver receives the value 2, a 

crotchet the value 4 etc.). Thus, the authors produce a matrix of the following format:

I11 I12 ... In

I21 I22 ... I2n

... ... ... ...

Im1 Im2 ... Imn

Starting with a distance Ii1 in the first column a sequence of distance is constructed and 

summated to an overall distance D = Ii1 + Ij2 + ... + Ikp + Il(p+1) ... + ... Imn, with i ≤ j ≤ k ≤ p ≤ l ≤ p+1 ≤ 

m ≤ n. The starting point  Ii1 and all possible combinations for the subsequent summands will be 

varied until a minimal value for Dmin is found. We will give an example:



Sequence 1 is: S1 = (d, 3/8), (b, 1/8), (c, 1/4) and sequence 2 is: S2 = (e, 1/4), (d, 1/4), (c, 1/4). We 

obtain the matrix comprising the following elements (with one semitone and one quaver fetching 

the value 1): I11 = 1.5, I12 = 0.5 I13 = 1.5, I21 = 3, I22 = 2, I23 = 1, I31 = 2, I32 = 1, I33 = 0, written in 

matrix form:

1.5 0.5 1.5

3 2 1

2 1 0

As we can see, the minimal distance is given by Dmin = I11 + I12 + I33 = 2. Seemingly, this 

approach has little to do with dynamic programming except the need for variation. However, as we 

will see, there exists a strong link: Assuming, that a tone t1i of S1 has the same value as a tone t2j of 

S2, we have a match. In case there is a difference between these two tones, one tone will have to be 

substituted where the weight of this edit operation will depend on the distance between these two 

tones (this is reminiscent of Shepard’s model). In case S1 contains one more tones than S2, dynamic 

programming requires that either a tone of S1 will have to be deleted or another tone will have to be 

added to S2. However, this is not exactly what Sankoff and Kruskal do. If, for instance, we “delete” 

the last tone t1n of S1, without any further deletion or addition, this will mean that tone t1n-1 will be 

edited to equal t2m as well as tone t1n; the two last tones of S1 will be mapped onto the last tone of S2. 

In our example above, we find that tone t11 = (d, 3/8) of S1 was mapped onto tone t21 = (e, 1/4) as 

well as onto the first quaver duration of the tone t22 = (d, 1/4) of S2, while the tone t12 = (b, 1/8) of S1 

was mapped onto the second half of the tone t22 = (d, 1/4). Tones t13 and t23 proved to be a match. 

Although this is, strictly speaking no deletion, it can be interpreted as such, where the distance 

between t1n and t2m will be interpreted as the weight of deletion.

No doubt,  this  is  an  interesting  approach  combining  elements  from other  models  (it  is 

Tverskian in as much as dynamic programming is Tverskian and it is Shepardian in as much as its 

a kz ks k a k k kSequence 1 Sequence 2



weighting  factors  are  determined).  However,  there  are  a  number  of  serious  problems with  the 

model. The main issue was addressed by Smith, McNab & Witten (1998): The model produces a 

number of possible sequences of edit operation, all producing minimal edit distance. Further, some 

of these edit sequences might, in the words of Smith, McNab & Witten, “not make sense”. This 

implies, in case none of the edit sequences which make sense produce minimal edit distance, that 

the similarity rating is overrated. The fact that results will have to be evaluated on the basis of 

musical judgements decreases its applicability and value significantly. However, the main problem 

with  this  model  appears  to  be  its  missing  support  through  empirical  data.  For  instance,  the 

implementation which gives more weight to pitch than to duration (Iij = (p1i - p2j + d1i - d2j) /2), 

is  entirely  arbitrary,  and yet  similarity  ratings will  crucially  depend on the adjustment  of these 

weights.  Moreover,  just  as  the  issue  was  raised  when  discussing  the  Earth  Mover’s  distance, 

mixing the pitch dimension with the time dimension seems extremely problematic.  Clearly, the 

validity of this model is questionable. 

2.4 Transition matrices

We finally  consider  transition  matrices;  a  model  which  is  based  upon a  concept  firstly 

introduced by Fucks (1965). Fucks intended to find a measurement in order to describe historical 

musical  development.  He  produced  transition  matrices  for  melodies  and  found  that  while  for 

instance 17th century music displayed low entropy, 20th century music displayed high entropy. 

Hoos, Renz & Görg (2001) presented a melodic similarity model where transition probabilities are 

obtained for melodies, and where two melodies are rated similar if they produce the same transition 

matrices. We will give an example: The melody: e, d, c, d, e, e ,e, d, d, d, e, g, g, e, d, c, d, e, e, e, e, 

d, d, e, d, c (Marry had a little lamb) produces the following transition matrix:

Table 1: Transition matrix for the song Mary had a little lamb.



If we now changed, let us say the first d to a c, the transition matrices would largely remain 

the same.

Table 2: Transition matrix for the song Mary had a little lamb with the note d changed to c.

Although it might appear that this model captures changes sufficiently, we find that this is 

not the case, for several reasons: The main problem might be that melodies which are different can 

produce the same matrices (e.g., c, d, d, e, d, e, c, e and c, d, d, e, c, e, d, e). This means that ratings 

according  to  this  model  will  produce  erratic  material  because  it  is  based  on  a  misconception. 

Further, we find that changing a tone within the melody will effect changes in the transition matrix 

in  three  places,  while  changing  the  last  note  will  effect  two  changes  only.  Considering  the 

recency/primacy effect,  we would  expect  the  last  note  to  be  of  greater  importance  rather  than 

smaller importance. Thus, the model seems to disregard cognitive principles. Finally, it is entirely 

unclear how to rate changes within the transition matrix, as there are no empirical data available to 

determine the values of possible parameters. The author concludes that this model has no future.

3 Critiques on the conception of similarity

Summarizing the features of the models discussed above, we find one particular critique 

recurring throughout: It seems none of the authors writing on melodic similarity are considering 

that an appropriate model, should such a model be available, will at least have to include some 

empirical constants. Instead, these authors seem to imply that we already know the relevant features 

and the empirical parameters  of melodic similarity which they then input into a model. Although 

the author is aware that there are some empirical studies available (e.g., Cuddy, Cohen & Miller 



1979; Dowling & Harwood, 1986; van Egmond & Povel & Maris 1996; Francès, 1988 Gabriellson, 

1973; White, 1960; Hofmann-Engl, 2003) there is still not enough empirical information available 

in order to identify the relevant features. Thus, even if the models did not show deficiencies and 

inconsistencies,  they  still  would  remain  purely  speculative.  For  instance,  none  of  the  models 

incorporated  dynamics,  although  it  seems  extremely  unlikely  that  dynamic  variations  will  not 

influence similarity judgements. In fact, the difficulties with all these models are so substantial that 

we might ask the question whether a model of melodic similarity is attainable or at least desirable.

This question, whether similarity measures are attainable and desirable, was asked by Clarke 

& Dibben (1997), who posed the question: “Does it really make sense to ask whether musical event 

X is more similar to Y than Z. Is this a judgement anyone often (or ever) makes”. Their argument, 

so they claim, is supported by the fact that nobody so far - referring to Nattiez (who, in the opinion 

of these authors, should have been able by now to deliver a more formalized method of identifying 

and classifying motivic material) - has yet been able to deliver an operational model. Although the 

exposition of several existing models above renders such a claim an over-generalization, the non-

existence of a tool does neither mean that such a tool is unattainable nor that the development of 

such a tool is not desirable. However, Clarke and Dibben are right to bring to our attention the 

question of what we actually  are seeking. True, if these authors are correct with their opinion that 

similarity judgements are hardly ever made, then there is no need for the development of such a 

model, indeed. However, this seems not to be the case. The author will give eight examples which 

will involve some form of similarity judgement: (a) The comparison of different interpretations of a 

specific  composition,  (b)  a  student  trying  to  reproduce  just  the  sound the  teacher  produces on 

her/his  instrument,  (c)  a  musician  working  out  a  specific  interpretation  of  a  composition  for 

performance based on melodic comparisons, (d) an analyst performing a motivic analysis, (e) an 

ethnomusicologist tracing the origin of melodic material, (d) a judge deciding whether a copyright 

infringement suit over a motive should be granted or not, (e) a composer producing a variation of a 

theme, and most importantly perhaps (f) the classification and retrieval of melodic material in a data 

base (MIR).  True,  a composer might produce a  variation according to some abstract  algorithm 

without considering cognitive implications, the judge just wants to find the liar and similarity is one 

means to this end, the student is probably not even aware of any similarity judgement, while the 



ethnomusicologist is or should be interested in cognitive processes. Admittedly,  the strategy and 

result of similarity judgements might depend on context, but the author hopes that the examples 

given are sufficient to disprove Clarke’s & Dibben’s claim as unsubstantiated. Surely, a model is 

desirable, but whether it is attainable and if so in what shape and form seems to be the question. We 

will commence with the investigation of the first part of the question of whether a model might be 

attainable.

A major issue raised in the context of similarity is the issue of categorization. A seemingly 

popular theory (e.g., Posner & Keele, 1968; Reed, 1972; Rosch & Mervis, 1975) understands the 

relationship between similarity and categorization in the following manner:  an object  a is more 

likely to be classified as belonging to the category A than belonging to the category B, if object a is 

more similar to all the objects in category  A than it is to all the objects in category  B. This link 

between categorization and similarity can be expected to hold true in a reversed relationship: Once 

two objects are assigned to two different categories, they will also be seen as less similar than two 

objects from the same category, even if they should share more relevant common features to a 

stronger  degree.  However,  Goodman (1972) remarks that  this  approach implies a philosophical 

weakness. He argues that, for instance, assigning the letter A to the category of As, because of its 

similarity to this category, requires the existence of the category of As and thus similarity does not 

explain categorization.  It  seems that Goodman is  referring to existing categories,  and no doubt 

similarity is insufficient in explaining the assignment of elements to existing categories. However, 

the question whether similarity is a factor in the ontogenesis of categories is unaffected by his 

argument. Moreover, the argument formulated above will also imply that an appropriate similarity 

model would ideally consider categorization. Without going into a lengthily discussion, it seems 

that existing approaches to melodic categorization have been found unsatisfactory.  For instance, 

Adams (1976) suggested to classify material according to contour features, but his approach was 

subsequently refuted by Marvin & Laprade (1987). Much of Nattiez’s (1975) analytical technique is 

based  on  melodic  comparison  and  melodic  classification.  However,  Clarke  &  Dibben  (1997) 

expressed their concern that Nattiez has failed to bring his method into a cohesive system. Lerdahl’s 

and  Jackendoff’s  hierarchical  structuring  (1983)  produces  a  segmentation  of  melodic  material, 

which implies categorization (as utilized by Cambouropoulos, 1998). However, their methods have 



been so widely criticized (e.g., Rosner, 1984; Clarke, 1986; Cross, 1998) that even a summary of 

these critiques exceeds the framework of this article. It seems apparent that there does not exist a 

sound understanding of melodic categorization. Hence, a model of melodic similarity cannot be 

built  upon  a  theory  of  melodic  categorization.  However,  building  a  melodic  similarity  model 

(admitted of limited validity), we might enhance the investigation into issues of categorization. For 

instance,  assuming we developed a reliable model which is operational in various contexts and 

assuming further that we then find that the predictions of the model do not coincide with empirical 

data in a new context, we might be able to explain this deviation as a result of categorization. Such 

new knowledge itself then would lead to a modification of a similarity model and so on. Thus, the 

author concludes that the absence of a theory of melodic categorization at the present time increases 

the need to develop a  melodic similarity model  independent of categorization. However, in order 

to establish which features this model should incorporate, we will consider a second critique by 

Goodman.

We considered earlier Goodman’s critique - in the context of Tversky’s similarity model - 

where he stated that a comparison of two items requires a frame of reference (i.e., similar according 

to  a  specific  measure).  It  seems that  researchers  consider  six  main  factors  which  influence  or 

determine the frame of reference. These factors are: context, culture/language, expertise, age and 

experimental method.

There  seems  to  be  strong  empirical  evidence,  that  similarity  judgements  are  context 

dependent (Goldstone, Medin & Halberstadt, 1997), and we referred earlier to Barsalou’s (1982) 

experiment, who found that raccoon and snake are less similar if no context is given than when 

compared in the context of pets.  Barsalou (1983) also showed that seemingly highly dissimilar 

objects receive a high similarity rating when put into specific context (e.g., jewellery and children in 

context of “things to retrieve from a burning house”). However, this argument seems to indicate that 

context changes the absolute scale but not necessarily the relative scale. To give an example 50 

cents is half of $1, which can seem a lot more. However, if we see this in the context of $1,000,000 

there seems to be not much of a difference between 50 cents and $1. Nevertheless, 50 cents is still 

just  half  of  $1.  Thus,  it  seems  we  are  dealing  here  with  a  measurement  issue  (influence  of 



experimental method) rather than an issue concerning context. There is however, a second way of 

how to interpret Barsalou’s findings. While our example above involves a one-dimensional quantity 

comparison,  the comparison of children and jewellery involves features which are far less well 

defined. In fact, it seems that an almost infinite amount of quantitative and qualitative features can 

be assigned to both children and jewellery, so that context is desperately needed in order to select 

the relevant features. If no context is given, we might speculate that participants of an experiment 

will  create their own context.  Still,  how relevant this observation are in the context of melodic 

similarity  remains  an  unsolved  issue.  Comparing  two  melodies  is  supposed  to  be  a  cognitive, 

perceptual  and  almost  automatic  process,  while  the  comparison  of  children  and  jewellery  is  a 

judgement of conceptual similarity, and as mentioned above, cognitive similarity seems to be less 

dependent on context than conceptual similarity. Finally, the comparison of two melodies seems to 

involve a limited number of features (such as pitch, dynamics, tone-colour and rhythm), hence we 

would expect that context will be far less important in the selection of the relevant features. Still, we 

might argue that it seems unlikely that a transformation of a transitional passage of a composition 

will be as significant as the transformation of the main theme of a composition. Similarly, we might 

expect that the change of a specific rhythm such as   to be more significant if the same rhythm 

surrounded by the same rhythm such as . However, it seems that, at this point, a 

contextual melodic similarity model is unattainable.  True, that this will put constraints onto the 

model, but a context free model will at least produce some testable hypotheses. Still, even if we 

now  developed  a  context  free  model  (disregarding  features  such  as  harmonic  implications), 

Goodman’s argument holds true in as much as a frame of reference will be required. Thus, a model 

will have to be developed in such a way  that there is scope for adaptability, not just in form of 

empirical constants but on a more fundamental level.

In a classic text by Whorf (1941), we find as Goldstone (1994) reports, a rather intriguing 

Wittgensteinian offshoot on language and similarity.  During his studies of the Shawnee Native 

American  language,  Whorf  seemed  to  have  confirmed  that  language  and  culture  are  strongly 

interlinked, not just the vocabulary but even the syntactic organisation of language (for instance the 

temporal structure). Consequently, we would also expect that such interdependency of language and 

culture will affect similarity judgements. Indeed, Whorf gives us an example. He argues that for a 



Shawnee Native American the two sentences: “I pull the branch aside” and: “I have an extra toe on 

my foot” are highly similar sentences. This is, more literally translated, the first sentence takes the 

form: "I pull it (something like the branch of a tree) more open or apart where it forks", while the 

second sentence becomes, "I have an extra toe forking out like a branch from the normal toe”. 

However interesting this example might be, it does not demonstrate as Goldstone (1994) seems to 

imply,  that  syntactic  similarities  will  induce  semantic  similarities  which  then  evoke  cognitive 

similarities. However, we might argue in a Shepardian fashion, that cultural difference will lead to 

difference in categorization, which will then somehow be reflected in the user’s language and hence 

similarity  judgements  and  language  are  expected,  if  not  to  be  causally  related,  so  still  to  be 

correlated. Consequently, we would want a melodic similarity model to be sensitive towards culture 

and possibly sensitive towards language. However, the development of such a model would appear 

as rather overambitious at this point. This is not to say that a more abstract model will be of no 

value in a cross-cultural setting. Should, for instance, such a model lead to predictions which will 

deviate from measured data in a given culture, we might be able to generate a better understanding 

of this given culture in reference to these deviations.

It  has  been argued that  similarity  judgements  are  dependent  on expertise.  For  instance, 

Suzuki, Ohnishi & Shigemasu (1992) found that experts, when asked to compare various stages of 

the Hanoi puzzle with the completed puzzle, judged similarity by assessing how many steps were 

needed to complete the task, while novices rated similarity according to shared features between the 

various stages and the completed puzzle. However, this result seems to suggest that experts and 

novices interpreted the question of how similar two items are in a different fashion. While experts 

understood  the  question  as,  “How  many  steps  are  needed  to  complete  the  puzzle”,  novices 

interpreted the question as, “How similar are the looks of two visual images.” From this point of 

view, we might argue that experts interpreted the question differently by rating similarity to how 

much work they would have to do.  Thus,  it  appears  to  the  author  that  this  experiment  cannot 

support the hypothesis that there is a significant difference in similarity judgements depending on 

expertise.  However,  it  is  such a common feature in music psychological  experiments  (compare 

Deutsch, 1999) to generate expertise dependent data, that we might suspect that the same will hold 

true for melodic similarity. Further, we might expect that musical experts will deliver more accurate 



similarity  judgements,  meaning data with smaller  variance,  than musical  novices do.  Thus,  the 

model will have to include some empirical constant which can be adjusted according to the level of 

expertise.

It also has been observed that similarity is age dependent (e.g., Shepp & Schwartz, 1976, 

Smith & Kemler, 1977, Smith 1989a). It seems to be the general point of view that young children 

judge similarity  according to  an  overall  similarity,  while  older  children may choose  a  specific 

dimension in order to compare objects in reference to this one specific dimension ignoring other 

dimensions.  Typically,  a  sample  of  preschool  children  is  compared  with  a  sample  of  school 

children. Similarity is rated on shapes which differ in size and color. While preschool children rate 

similarity  along both dimensions (size  and color),  school  children tend to regard two items as 

similar  if  they are identical  along one dimension (e.g.,  size)  without  any consideration  for  the 

second dimension (e.g., color). Further, when asked, young children find it difficult to identify in 

what respect two objects are similar. This age dependency has been challenged by Smith (1989b) 

who found that not only preschool children use overall-similarity judgments but adults as well when 

the stimuli  are  more complex (varied  over  more than two dimensions).  This  is  what  Medin & 

Ortony  (1989)  seem  to  refer  to  as  heuristic  similarity.  Putting  similarity  into  an  evolutionary 

context, they propose that information (such as ‘this is a lion’) will be analyzed according to overall 

similarity in order to derive competent decisions (such as running away, instead of petting). Quite 

clearly this also implies a certain amount of context independence. It seems a strong argument and 

has  been  juxtaposed  by  Goldstone  (1994),  who  pointed  out  that  we  will  behave  cautiously  if 

confronted with a snake which resembles a rattlesnake and the fact that snake rimes with snowflake 

will  be  of  no  significance.  He  further  points  out  that  where  context  dependency  of  similarity 

measures occur, it seems to be systematic rather than random. Thus, they can be integrated in a 

wider model.

4. A conceptual framework of melodic similarity

Summarizing, we conclude that a melodic similarity model is desirable, has to be context 

independent,  has to identify the relevant features,  has to include empirical constants and has to 



incorporate some conceptual flexibility. The author further hopes to have demonstrated that all the 

reviewed  models  above  are  characterized  by  a  series  of  deficiencies  in  one  form or  another. 

Moreover, all models do not provide conceptual flexibility. This inflexibility seems to stem from a 

distinct absence of a theoretical framework. The author feels, that asking the question, what are the 

relevant  features and how these features  are  compared when rating the similarity  between two 

melodies is far more promising. 

This  is  indeed  what  Hofmann-Engl  (2001,  2002,  2003,  2004)  undertook.  He  identified 

melota (correlated to pitch), chronota (correlated to duration) and dynama (correlated to loudness) 

as the relevant parameters. He then introduced a representation of melodies in form of atomic beats. 

Note, that this representation was firstly used by Gustafson (1987), although he used a different 

terminology and applied this representation rhythms only. We will give an example referring to the 

musical example above (with added dynamics). The first sequence was: (d, dotted crotchet, forte), 

(b, quaver, mezzo forte), (e, crotchet, piano) and the second sequence was: (e, crotchet, piano), (d, 

crotchet, mezzo forte), (c, crotchet, forte). The smallest beat is a quaver (= 1/8), hence we rewrite 

the sequences as:

Ch1 = [(d, 3, f), (d, 3, f), (d, 3, f), (b, 1, mf), (e, 2, p), (e, 2, p)](1/8) and

Ch2 = [(e,2, p), (e, 2, p), (d, 2, mf), (d, 2, mf), (c, 2, f), (c, 2, f)](1/8)

This is to be read: Both chains (sequences) consist of 6 atomic beats (unit is 1/8). On the 

first atomic beat of ch1 we find the meloton (pitch) d, the chronoton (duration) 3 * 1/8 which makes 

a dotted crotchet (3/8) and the dynamon (loudness) f for forte. The second atomic beat contains the 

same values so does the third. The forth atomic beat is b, 1 * 1/8 (which is a quaver) and mf for 

mezzo forte. The other atomic beats have to be read in similar fashion.

Now,  rather  then  inputting  all  three  parameters  straight  into  one  model,  Hofmann-Engl 

treats all three dimension separately (cross-interferences will need further investigation before they 

can be integrated into a melodic similarity model. More on this subject can be found below). Thus, 

we obtain the following graph for the melotonic similarity:  



Figure 3: Melotonic (pitch) similarity  between the two melodies: d, b, e and e, d, c. The dotted line 

represent the similarity: the less straight  the line is and the further away from the x-axis the smaller 

the similarity. The values are b = 1, c = 2, ...

Chain ch1 is represented by the line with the standing triangles (d fetches the value 4, b the 

value 1 etc.), the second chain ch2 is represented by the line with the upside down triangles and the 

third line (crosses) represents the difference between the two chains (first atomic beat is: 6 - 4 (d 

against  e),  second beat:  6 -  4,  third beat:  4 -  4 etc.).  We will  call  this line the similarity  line. 

Hofmann-Engl’s claim is that the similarity line is the basis for the calculation of melotonic (pitch) 

similarity:  Firstly,  the  melotonic  difference  of  both  chains  is  the  larger  the  further  this  line  is 

displaced from the x-axis and secondly, the interval  difference of both chains is larger the less 

straight the line is. Both, the melotonic difference and the interval difference have been identified as 

melotonic similarity factors within two experiments (Hofmann-Engl, 2003). Thus, this approach has 

empirical support. Further, Hofmann-Engl maintained that not one single model will be correct, but 

depending on length and features such as stream segregation different models will have to applied. 

He also maintained that the differences should not be computed in al linear fashion but using the 

exponential function , e−k  where  k is an empirical constance and Delta the differences either 

between the relevant melota or the relevant intervals. The model also covers the situation when two 

melodies are of different  length as well  as glissandi.  However,  one simple form which can be 

considered to be approximative is the following:
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where S is the similarity, k an empirical constant, n the number of tones, f1(xi) the melotonic chain ch1 and 

f2(xi) the melotonic chain ch2. 

 For more detail compare Hofmann-Engl (2001, 2003). However, in order to offer the reader 

a small insight, the author presents Hofmann-Engl's algorithm for glissandi both lasting the same 

length τ covering the aspect of interval difference similarity:

where  Sinterval  is the melotonic interval difference similarity,  k2(t) and  c2 empirical constants,  t   the time 

(length of the glissandi),  m(t) the melotonic glissando 1 and m'(t) the melotonic glissando 2 and τ the 

length of the glissandi. Note. The time dependency of  k2 as due to the primacy/recency effect we can 

expect that the similarity rating of the beginning and ending of two glissandi will be more important than 

the parts n the middle.

Now, the chronotonic similarity is approached in a similar fashion.
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Figure  4:  Chronotonic  (duration)  similarity   between  the  two  rhythms:  dotted  crotchet,  quaver, 

crotchet and crotchet, crotchet,  crotchet.  The dotted line represent the similarity: the further away 

from the x-axis the smaller the similarity. The values are quaver = 1, crotchet = 2 ...

The line with upright triangles represents the first chain and the line with the upside down 

triangles the second chain. The dotted line is the chronotonic similarity line. However, now we find 

that the distance of the similarity line to the x-axis is the only similarity factor. This is confirmed by 

one experiment conducted by Hofmann-Engl (2003). Still, just as before, he maintains that not one 

single model will be sufficient but that it will be necessary to consider several models based upon 

the similarity line and an exponential functions depending on  factors such as length and stream 

segregation.   

The dynamic similarity line is illustrated in the figure below.              
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Figure 5: Dynamic (loudness) similarity  between the two melodies: f, mf, p and p, mf, f. The dotted 

line represent the similarity:  the less straight  the line is and the further away from the x-axis the 

smaller the similarity. The values are: p = 1, mf = 2 ...

Again, we obtain a line for the first and second chain and the similarity line which is marked 

by the crosses. Hofmann-Engl speculated that dynamic similarity will be correlated to the distance 

of this line from the x-axis and to the curviness of it (in analogy to melotonic similarity). However, 

this hypothesis has not been tested in an experiment. 

The overall melodic similarity will be calculated as:

where S is the overall similarity,  µ, χ and δ are empirical constants, Sm is the melotonic similarity,  Sc is 

the chronotonic similarity and Sd is the dynamic similarity.

Note, that all three dimensions are treated independently.  As the literature indicates (e.g. 

Tekman, 1997), the three dimensions are somewhat interrelated and hence we might expect that 

formula (13) might have to be modified. However, there are no clear data available at present on 

how such a modification would have to be done and hence it would appear overambitious to do so 

at this point in time. Hofmann-Engl (2003) conducted three experiments which are in support of his 

approach. Two of these experiments were conducted in the context of melotonic similarity and one 

in  the  context  of  chronotonic  similarity.  Still,  formula  (13)  remains  speculative  and  so  are 

Hofmann-Engl's  assertions  about  the  issue  of  dynamic  similarity.  Moreover,  as  pointed out  by 

Toussaint (2004), there exists a large family of possible distance measure functions and the one 

proposed by Hofmann-Engl is just one amongst others, that it is to be seen which of those functions 

will  deliver  the  best  correlation  between  measured  and  predicted  data.  Hofmann-Engl  (2003) 

maintained that mathematical and music theoretical aspects two should be considered. Following 

Toussaint's approach, we list the Kullback-Liebler divergence for discrete function given as:

(13)S= S mS cS d



where KL is the Kullback_Lieber distance, n the length of the chains, f1(xi) the value of the chain ch1 at 

the place i and f2(x2) the value of the chain ch2 at the place i.

 and the Kolmogorov variational distance given as:

where K the Kolmogorov variational distance is the distance, n the length of the chains, f1(xi) the value of 

the chain ch1 at the place i and f2(x2) the value of the chain ch2 at the place i. 

Toussaint  (2004)  concludes  that,  in  the  context  of  rhythmic  similarity  measures,  the 

chronotonic distance, as described above and computed along the formulae 14 and 15, is the overall 

best rhythmic similarity measure  when compared with other rhythmic similarity measures. This 

adds strong support to Hofmann-Engl's conceptual framework. Finally, as found by Müllensiefen & 

Frieler (2004) melotonic interval similarity measures are the single best predictors.

Thus,  although  more  experiments  will  have  to  be  conducted  in  order  to  establish  the 

reliability  of  Hofmann-Engl's  conceptual  framework,  it  appears  that  there  exists  already  some 

strong support for this approach.

5. Conclusion

This paper set out to compare different approaches to melodic similarity classifying these 

into  four  groups:  (a)  Contrast  models,  (b)  distance  models,  (c)  dynamic  programming  and (d) 

transition matrices. There, it became clear that melodic similarity models belonging to class (a), (c) 

and (d) are weak in several  aspects.  Further,  we found that  existing melodic similarity  models 

(15)

(14)KL=∑
i=1

n

f 1x i log
f 1x i
f 2x i

K=∑
i=1

n

∣ f 1x − f 2x ∣



belonging to class (b) too displayed deficiencies. The author then considered the existing literature 

on similarity form a psychological angle demonstrating that a great many issues are involved such 

as age and expertise dependencies as well as questions about categorization. In a final section the 

author introduced the reader to an approach to melodic similarity which belongs to class (b). Rather 

then  presenting  simply  yet  another  algorithm,  the  author  illustrated  through  an  example  the 

conceptual  framework of  melodic  similarity  in  form of  similarity  lines.  The  advantage  of  this 

approach is firstly that it does not contain systematic errors, secondly that it does not conflict with 

existing empirical data and secondly and thirdly that it gives scope for implementation in a number 

of ways. The exact nature of this implementation is a matter of discussion at the forefront of the 

current research, but – so the author's claim – the exact mathematical form of a model will always 

depend on the context of the application.
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